Section 2.5

Basics

Inequalities come in four flavors

\[\leq, \geq, >, < \]

The ones with the lines under then include the possibility of equality

\[2 \leq 2 \text{ is true} \]
\[2 < 2 \text{ is false} \]

I tend to think of them as the "pointy side" points to the smaller item. If you keep that thought in mind the following are the same

\[2 < 3 \text{ or } 3 > 2 \]
\[1 < x < 6 \text{ or } 6 > x > 1 \]

Notice that all of the following are true which says that similar to equations as long as we do the same thing to both sides the inequality remains the same.

\[2 + 1 < 3 + 1 \]
\[2 - 1 < 3 - 1 \]
\[2 \times 3 < 3 \times 3 \]
\[\frac{2}{4} < \frac{3}{4} \]

There is one exception though which is multiplying or dividing both sides by a negative number.

\[2 < 3 \]
\[2 \times -2 < 3 \times -2 \text{ is false} \]
\[2 \times -2 > 3 \times -2 \text{ is true} \]

Interval Notation

This notation is a way to represent a collection of numbers on the number line. The format is show below

\[(\text{ or } [\text{ smaller item, larger item }] \text{ or }] \]

Some symbols
off to the right forever ∞
off to the left forever $-\infty$

(or] and when to use

(or) go with $>$ or $<$ and with $\pm \infty$
[or] go with \geq or \leq

Examples

\begin{align*}
x > 3 \text{ is } (3, \infty) \\
x \leq 3 \text{ is } (-\infty, 3] \\
1 < x \leq 3 \text{ is } (1, 3] \\
\text{all real numbers is } (-\infty, \infty)
\end{align*}

Later in the course we will see intervals with "split" pieces such as the following
\[x < 3 \text{ or } x > 5 \text{ which is } (-\infty, 3) \cup (5, \infty) \]

The \cup stands for union. If you see a \cap this stands for intersection or the part in common.

Danger

Finally be very careful as in the next example.
\[2 > x \]

Some students try to tell me that because the item points to the right the collection is everything bigger than 2. Actually if you "try" 3 you will see this cannot be the case.

The notation is really
\[(-\infty, 2) \]

Example #20, page 80

\begin{align*}
-3x &\leq 9 \\
x &\geq \frac{9}{-3} = -3 \\
x &\geq -3 \\
&\quad \quad [\,-3, \infty) \n\end{align*}

Example #54, page 80
\[3(x - 1) \geq -(x + 4) \]
\[3x - 3 \geq -x - 4 \]
\[4x - 3 \geq -4 \]
\[4x \geq -1 \]
\[x \geq \frac{-1}{4} \]
\[\left[\frac{-1}{4}, \infty \right) \]

Example #70, page 80

\[-2(x - 4) < 5(x - 1) \]
\[-2x + 8 < 5x - 5 \]
\[8 < 7x - 5 \]
\[13 < 7x \]
\[\frac{13}{7} < x \]
\[\left(\frac{13}{7}, \infty \right) \]

Example #74, page 81 Strange Cases

\[5x - 2 > 5x + 3 \]
\[-2 > 3 \]

No solution since this is never true.

\[3x - 4 < 3x - 7 \]
\[-4 < 7 \]

Where did the variables go?

This is always true so

\[(-\infty, \infty) \]